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Anisotropic optical crystals with two-photon resonance impurity atoms are shown to have three different
mechanisms of the formation of breathers depending on the direction of the wave propagation and on the
symmetry of the medium. Explicit analytic expressions for the parameters of nonresonance and resonance
two-photon breathers of extraordinary waves are obtained. It is shown that, unlike one-photon breathers, for
two-photon breathers in the media with quadratic susceptibilities and the crystal classes 3, 3m, 4, 4mm, 6,
6mm, and Kerr media two different structures of the breathers zones are realized.
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I. INTRODUCTION

The existence of breathers is one of the most interesting
and important manifestations of nonlinearity in optical sys-
tems [1–3]. The determination of the mechanisms causing
the formation of the optical breathers and the investigation of
their properties in different nonlinear media are among the
principal problems of the physics of nonlinear waves.

The basic sources of the optical nonlinearity in dielectrics
and semiconductors may be the following.(1) Nonresonant
nonlinearity. Media possess nonlinear susceptibilities of sec-
ond (quadratic) and third(cubic) orders[4,5]. (2) Resonant
nonlinearity. A medium which contains optically active im-
purities whose excitation frequency is in resonance with the
frequency of a nonlinear optical wave. In such a case we can
observe the existence of one-photon and multiphoton reso-
nance processes, which form the basis of nonlinear reso-
nance spectroscopy[6].

Depending on the nature of the nonlinearity, the nonreso-
nance or resonance mechanism of the formation of breathers
(MFB) is realized. In the case of nonresonant nonlinearity,
which is expressed by means of the quadraticsdijkd or cubic
sri jkld susceptibilities, its competition with the dispersion
leads to the formation of nonresonance optical breathers
[1,7–9].

The resonant optical nonlinear wave can be formed with
the help of the resonance(McCall-Hahn) mechanism of the
formation of nonlinear waves, i.e., from a nonlinear coherent
interaction of an optical pulse with resonant impurity atoms
in solids, when the conditions of the self-induced transpar-
ency:vT@1 andT!T1,2 are fulfilled, whereT andv are the
width and frequency of the pulse,T1 andT2 are the longitu-
dinal and transverse relaxation times of the impurity atoms
[10,11]. When the area(energy, in the case of the two-photon

self-induced transparency) of the pulseQ.p, the solitons
are generated, but forQ!1 resonance optical breathers are
formed [1–3].

In experiments of McCall and Hahn[10] in a crystal of
ruby Al2O3:Cr3+ the excitation of resonance soliton was
reached when the pulse intensity exceeds some critical value
about 100 W/cm2. The necessary intensity for exciting reso-
nance optical breathers of small energy is significantly
smaller than the intensity necessary for exciting a resonance
soliton (2p pulse). Therefore the breathers can be excited
easier. The resonance optical waves of small energy are par-
ticularly interesting also because they can take part in a wide
variety of nonlinear optical phenomena, for instance, in the
processes of the formation of optical double breathers[12].
Resonance breathers of some equations of nonlinear optics
are also highly stable. The breather can be also considered as
a “zero-area pulse” which is experimentally studied in the
work [13] (see also[14]).

Depending on nonlinearity of the medium various MFB
are realized. When the coefficient of photon-atom connection
K!L nonresonance[9,15] (K@L resonance[2,3]) MFB is
realized, (where L=dijk in noncentrosymmetric media and
L=ri jkl in Kerr media). WhenK=L the “blended” MFB can
take place, when resonance and nonresonance mechanisms
are acting effectively simultaneously. The “blended” mecha-
nisms of the formation of the nonlinear optical and acoustical
waves have been considered by many authors[15–19].

Because numerical values of the quantitiesdijk , ri jkl and
K can vary very strongly in different media, different solids
will realize different mechanisms of the formation of optical
breathers[15]. But even more interesting for the study and
comparison of different mechanisms is the investigation of
these processes in one and the same crystal. Such a possibil-
ity is given if we consider anisotropic uniaxial crystals and
investigate processes of the formation of optical breathers for
optical extraordinary waves(Fig.1). It is well known that the
properties of extraordinary waves depend on the direction of
their propagation and therefore for different directions of the
propagation of the waves different relations between the
quantitiesdijk , ri jkl and K are realized. Hence if we change
the direction of the propagation of nonlinear waves, different
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mechanisms of the formation of optical breathers will be
realized. Consequently, in uniaxial media there exist certain
propagation directionsB (and zones around them) along
which one of the above mentioned MFB will be realized.

The investigation of the breather formation processes and
specific peculiarities of the propagation of nonlinear waves
in anisotropic media is also of interest because many laser
crystals are anisotropic[4,5], and isotropic solids can be-
come optically anisotropic ones in the presence of a constant
electric field or under the influence of a deformation[20]. It
is very important also that anisotropic uniaxial crystals in
many modern optical devices are used. Consequently this
considered problem has a rather general character and not
only has theoretical interest but it is very important for ap-
plications too.

All these problems under the condition of the one-photon
excitation of the impurities(OPEI) in uniaxial nonlinear
resonance media are investigated in details in Ref.[15]. Un-
der the condition of the two-photon excitations of the
uniaxial nonlinear resonance media, physical situations will
be different and special consideration will be necessary.

The main goal of this work is as follows. The investiga-
tion of the structure of breathers zones(SBZ) and the condi-
tions of realization of the resonance, nonresonance and
“blended” MFB in different anisotropic media under the con-
dition of the two-photon excitation of the impurities(TPEI)
and the determination of the explicit analytic expressions for
the parameters of the two-photon breathers for the extraordi-
nary waves.

II. BASIC EQUATION

We consider the mechanisms of the formation of optical
breathers in the anisotropic,(quadratic or cubic) nonlinear
and second order dispersive media under the condition of
two-photon excitation of containing impurity atoms in the
case when an optical pulse with widthT!T1,2 and frequency

v@T−1 propagating in the positive direction along theh axis
make anglea with thez axis. We shall consider the optically
uniaxial media—trigonal, tetragonal, and hexagonal crystals
with components of the permittivity tensor«xx=«yyÞ«zz. In
these crystals one of the principal axes of the permittivity
tensor«i j coincides with the axis of the symmetry of third,
fourth and sixth order, respectively. This axis is called optical
axis of the uniaxial crystal and we assume that this axisO is
points alongz axis (Fig. 1). Corresponding principal value of
the tensor«i j we determine as«zz=«i. Direction of the two
other principal axes(in the plane perpendicular withz axis)
are arbitrary and we determined as«xx=«yy=«'. Not con-
creting the physical nature of dispersive process, we describe
the dependence of permittivity tensor«i j on two variables—
wave vectorkW and frequencyv of wave (spatially and/or
temporally dispersion) [20].

In uniaxial media, the electric displacement vectorDW and

the vector of the strength of the electric fieldEW of the pulse
are parallel only ifkW points in the direction of one of the
principal optical axis, but not in general. There are two sys-

tems of orthogonal vector triplets:sDW ,HW ,kWd andsEW ,HW ,SWd and

without any loss of generality we assume thatEW ,DW ,kW, and

the Poynting vectorSW =sc/4pdfEW ,HW g lie in the single plane

yz perpendicular of the strength of the magnetic fieldHW ,
wherec is the light velocity in vacuum(Fig. 1). Then kW ·rW
=kh, whereh=zcosa+y sina.

The wave equation for the strength of the electrical field

EW sh ,td of the optical pulse in uniaxial media has the follow-
ing form:

]2EW

] t2
− c2 ]2EW

] h2 = − 4pS ]2PW

] t2
− c2grad divPWD , s1d

where the polarization of the medium

PW =E x̂s1dsx1,t1dEW sh − x1,t − t1ddt1dx1 + PW s2d + PW s3d + PW 8.

s2d

A first-order susceptibility tensorxi j
s1d=s«i j −1d /4p have two

independent nonzero components:x
'

s1d=xxx
s1d=xyy

s1d and xi
s1d

=xzz
s1d. The components of the second and third-order non-

resonance nonlinear polarizations have the following forms:

Pj
s2d =E x2,jsh1,h2,t1,t2;adEzsh − h1,t − t1d

3Ezsh − h1 − h2,t − t1 − t2ddt1dt2dh1dh2,

Pj
s3d =E r3,jsh1,h2,h3,t1,t2,t3;adEzsh − h1,t − t1dEzsh − h1

− h2,t − t1 − t2dEzsh − h1 − h2 − h3,t − t1 − t2 − t3d

3dh1dh2dh3dt1dt2dt3, s3d

where

FIG. 1. The direction of the propagation of the extraordinary

wave along axish. The vectorsEW , DW , SW, andkW lie in the yz plane.
The principal optical axisO of the uniaxial crystal and the vector of

electrical dipole moment of the impurity atomsdW0 point along axis
z. Direction of the axish coincide with one of the chosen directions
B shown as dashed lines. The BZ correspond to the hatched region
in which one of the MFB is realized.
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x2,jsh1,h2,t1,t2;ad = x jmnsh1,h2,t1,t2d
eE,meE,n

eE,z
2 ,

r3,jsh1,h2,h3,t1,t2,t3;ad

= r jmnrsh1,h2,h3,t1,t2,t3d
eE,meE,neE,r

eE,z
3 , j ,n,m,r = y,z,

wherex jmn and r jmnr are the components of tensors of the
quadratic and cubic susceptibilities[4–6]. en,m=eWn·eWm, eWm

are unit vectors which are points along vectorEW and x,y,z

coordinate axes;n,m=E,x,y,z, EW =eWEE, andEz=eE,zE. The
unity vector eWE determine the direction of polarization of
linear polarized optical wave(Fig. 1). For the most of non-
centrosymmetric crystalsdijk @ri jkl and usually third-order
nonlinearity can be neglected. Although for the convenience
in the equations we are keeping the both membersx jmn and
r jmnr really only one of them is not zero in dependence from
this we consider noncentrosymmetric or Kerr medium.

The quantityPW 8 is the resonant nonlinear polarization due
to the interaction of pulse with optical active impurity atoms
under condition of two-photon processes. We shall assume,
as is true of a large class of laser crystals(see, for example,

Ref. [5]), that the vector of electric dipole momentdW0 of
impurity atoms and the optical axisO of uniaxial matrix
coincide. In such system the theory of self-induced transpar-
ency constructed in the work[21]. Another situation of self-
induced transparency in anisotropic media when the vector

dW0 do not coincide with the optical axis of the crystal con-
sidered in the work[22]. In the present work we assume that

the vectordW0 and the optical axisO of matrix coincide and

directed to the axisz. In such a case the vectorEW and the

vector of polarization of the impurity atomsPW 8 are coupling
to each other through theirz-componentsEz and Pz8 [21].
Consequently, we have to consider the nonlinear wave equa-

tion (1) for the z-component of the quantityEW sh ,td.
We can materially simplify Eq.(1), using the method of

slowly changing profile. For this purpose, we represent the
function Ez andPz8 in the form

Ez = o
l=±1

ÊlZl, Pz8 = n0o
l

ZldlÊ−l , s4d

whereZl =expfil skh−vtdg , Êl anddl are the slowly changing
complex amplitudes of the optical wave, andl runs through
the values ±1, ±2…. To guarantee the reality of the quantity

Êl we setÊl =Ê−l
* [15]. The dependence of the quantitydl on

the strength of the electrical fieldÊz is governed by the op-
tical Bloch equations which are based on the representation
of the resonance impurity atoms by an ensemble of two-level
atoms whose evolution is caused by processes of interaction
with optical extraordinary waves[11].

Substituting Eqs.(2)–(4) in Eq. (1) we obtain for the en-
velopes the following nonlinear wave equation

o
l

ZlHFWlsadÊl − ialsad
] Êl

] h
+ iblsad

] Êl

] t
− mlsad

]2Êl

] h2

− glsad
]2Êl

] h ] t
− dlsad

]2Êl

] t2
G − o

l8

xl,l8
s2dsadÊl−l8Êl8

− o
l8,l9

rl,l8,l9
s3d sadÊl−l8−l9Êl8Êl9 − r lsadsdl,1 + dl,−1dJ = 0

s5d

and connect with them the system of Bloch equations for
two-photon processes

] dl

] t
= il s2v − v21 + GÊlÊ−lddl − ilk0NÊl

2,

s6d
] N

] t
=

i

2
k0 o

l=±1
ld−lÊl

2,

where

Wl = l2sc2k2kl
s2d − v2kl

s1dd,

al = lsc2lk2Al
s2d + 2kc2kl

s2d − lv2Al
s1dd,

bl = lsc2lk2Bl
s2d − 2vkl

s1d − lv2Bl
s1dd,

gl = ls2vAl
s1d + lv2Tl

s1d − 2c2kBl
s2d − c2lk2Tl

s2dd,

dl = c2l2k2Dl
s2d − l2v2Dl

s1d − 2lvBl
s1d − kl

s1d,

ml = c2l2k2Cl
s2d + c2kl

s2d + 2c2lkAl
s2d − l2v2Cl

s1d,

Al
s jd =

] kl
s jd

] slkd
, Bl

s jd =
] kl

s jd

] slvd
, Cl

s jd =
1

2

]2kl
s jd

] slkd2 ,

Dl
s jd =

1

2

]2kl
s jd

] slvd2 ,

Tl
s jd =

]2kl
s jd

] slkd ] slvd
, j = 1,2, r lsad = 2pv2n0clsadd−l ,

clsad = 1 −
k2c2

v2 cos2a«'
−1slv,lkd, kl

s1d = «islk,lvd,

kl
s2d =E Hdshddstd + 4p cos2a

3Fxi
s1dsh,td + tanax'

s1dsh,td
eE,y

eE,z
GJeil svt−khddtdh,
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G =
r22 − r11

4"
, k0 =

ur21u2

2"
, r ii =

2

"
o
n.3

umimu2vmi

vmi
2 − v2 , r21 = r12

* = o
n.3

m1mmm2

"svm2 + vd
, i = 1,2.

Here" is Planck’s constant,vnm andmnm are the frequencies
and matrix elements of electric-dipole moments transitions
betweenn and m level of energy of the two-level impurity
optical active atoms. The effective susceptibilities of the sec-
ond and third order in uniaxial media for the quantityEz
have the following form:

xl,l8
s2dsad = 4pl2v2fclsadsxzyyll

2cot2a + xzzzd + llcos2a

3sxyyz+ xyzyd − xyyycota cos2all
2g, s7d

rl,l8,l9
s3d sad = 4pl2v2fclsadll

2cot2asrzzyy+ rzyyz+ rzyzyd

+ clsadrzzzz− clsadll
3rzyyycot3a + llcos2a

3sryyzz+ ryzyz+ ryzzyd + cot2a cos2all
3ryyyy

− cos2a cotasryyyz+ ryyzy+ ryzyydll
2g, s8d

where

ll =
«islk,lvd
«'slk,lvd

, xi jn = xi jnslk,lv,l8k,l8vd,

ri jnm = ri jnmslk,lv,l8k,l8v,l9k,l9vd, i, j ,n,m= y,z.

III. OPTICAL TWO-PHOTON BREATHER

The further analysis of the set of equations(5) and(6), we
make use of the perturbative reduction method, developed in

Refs.[23,24]. Under the conditionuQlu!1, the quantitiesÊl
can be represented as

Êlsh,td = o
a=1

`

o
n=−`

+`

«sadYnwl,n
sadsz,td, s9d

where Qlsh ,td=k0e−`
t Êl

2sh ,t8ddt8 is the quantity propor-
tional to the energy of the optical pulse in the case of two-
photon transition, Yn=einsQh−Vtd , z=«Qsh−vtd , t=«2t , v
=dV /dQ, and« is the small parameter.

Such a representation allows us to separate fromÊl the
still more slowly changing quantitywl,n

sad. Consequently, it is
assumed that the inequalitiesv@V , k@Q, u]wl,n

sad /]tu
!Vuwl,n

sadu , u]wl,n
sad /]hu!Quwl,n

sadu are satisfied. In the interac-
tion of an optical pulse with a resonantly absorbing medium,
the most significant effects are usually observed at exact
resonance.Therefore, for simplicity, we consider the system
of Bloch equations(6) at exact resonance, i.e., with 2v
=v21.

For the determination of the explicit form of the quantity
Pz8 we expand the quantitiesdl =oa=1«

abl
sad and N

=oa=0«
aNsad in a perturbation-theory series in the small non-

linear parameter«. Substituting these expansions and expres-
sion (9) in the set of equations(6) we obtain

Pz8 = «3 o
l,n,n8,m

ZlYn
lRl,0sad
n − n8

wl,n−n8−m
s1d

wl,m
s1dw−l,n8

s1d , s10d

where

Rl,0sad =
4pn0k0v2t0

"V
clsad st0 = ± 1d s11d

is the optical resonance absorption coefficient under the con-
dition of TPEI [9,11]. The positive sign of the quantitiyt0
corresponds to the attenuating medium, the negative sign
corresponds to the amplifier medium.

From Eq.(10) it is clear that, unlike one-photon processes
[15], the resonance nonlinear polarizationPz8 does not con-

tain a linear part related toÊl, but consists only of a nonlin-
ear part.

Substituting Eqs.(9) and (10) into Eq.(5) we obtain the
nonlinear Schrödinger equation(NSE) for the quantities
cl,−l =«Îqlwl,−l

s1d (for l = ±1):

il
] cl,−l

] t
+

]2cl,−l

] yl
2 + ucl,−lu2cl,−l = 0,

where

yl =
h − vgt

Îpl

, pl = −
1

2

]2V

] Q2, ql =
ml − Rl,0

2Vdl − lbl − Qgl
.

The nonresonance nonlinear term

ml = Ml =
16p2v4sxl,−l

s2d + xl,2l
s2d dx2l,l

s2d

W2l − 2lalQ − 2lblV − 4glQV + 4dlV
2 + 4mlQ

2

s12d

for quadratic nonlinearity crystals and

ml = Ll = 4pv2srl,l,−l
s3d + rl,−l,l

s3d d

for crystals with cubic nonlinearity.
Substituting the soliton solution of the NSE for superen-

velopecl,−l, into Eq.(9), we obtain the following form for the

envelopeÊl of the breather solution from the wave equation
(5) under the conditionplql .0 [1–3,9,15,24]:

Êl =
2ilh0

Îql

e−il sw1,l+Vt−Qhd

cosh 2h0w2,l
, s13d

where

w1,l =
2j0h

Îpl

+ 2F2sj0
2 − h0

2d −
j0v
Îpl

Gt − w0,
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w2,l =
h

Îpl

+ S4j0 −
v

Îpl
Dt − y0.

The quantitiesj0,h0,w0 andy0 denote the scattering date
of the inverse scattering transform[1,24] when applied to the
nonlinear equation.

The appearance of the factoreil sQh−Vtd in the breather ex-
pression(13) indicates the formation of periodic, and slow in
comparison withZl, beats in coordinates and time, with char-
acteristic parametersV!v and Q!k. The equationWl=±1
=0 provides the dispersion law for extraordinary waves and
the relation betweenV and Q, for fixed values ofl and n
equal to ±1, has the form

alnQ+ blnV − glQV + mlQ
2 + dlV

2 = 0. s14d

Because all coefficients of this equation are functions ofa
the connection between quantitiesV and Q will depend on
the anglea too.

IV. STRUCTURE OF BREATHERS ZONE

The quantityql contains terms coming both from the reso-
nanceRl,0 and nonresonanceml nonlinear terms. Depending
on the values of these quantities, different mechanisms of the
formation of optical breathers can take place.

(a) ml =Rl,0 andmlRl,0,0. This is the condition of the
realization of the “blended” MFB when both the nonreso-
nance and resonance nonlinearities are simultaneously effec-
tive and act together with the dispersion in the process of the
formation of resonance optical breathers of the small energy.

(b) ml !Rl,0. The pulse interaction with optical impu-
rities has nonlinear character and nonresonance interactions
are ignored. This situation corresponds to the two-photon
self-induced transparency and resonance optical breathers of
the small energy[2,3].

(c) ml @Rl,0 The pulse interaction with optical impuri-
ties does not contribute to the formation of the nonresonance
breathers[9].

From the expressions(7), (8), and(11) it is clear that the
quantitiesml andRl,0 depend not only differently on the di-
rection of wave propagation, but also essentially on the sym-
metry of the medium. Hence the mechanisms of the forma-

tion of the optical breathers of extraordinary waves, which
are determined by means of the quantitiesml and Rl,0 will
depend both on the direction of propagation of the pulses and
on the symmetry of the medium. Thus we expect that several
chosen wave propagation directionsB exist in uniaxial crys-
tals at which different mechanisms[(a), (b), and (c)] of the
formation of the optical breathers are effectively contribut-
ing. In Fig. 1 direction of the wave propagation coincide
with one of theseB chosen directions. In Figs. 1–3, these
directions are shown by dashed lines. Breather zones(BZ)
correspond to the hatched regions around these directions
where one of the MFB will be most effective. There are
forbidden zones(FZ) located between the BZ where the
MFB are not or only weakly effective(Figs. 2 and 3).

In order to find these directions we have to analyze the
symmetry of the media. Analyzing the expression(7), we can
separate all quadratic uniaxial crystals into the three groups:
The first groupsG1d contains the crystals with the crystal

classes(CC) 4̄, 6̄ and 6̄m2 of the uniaxial tetragonal and
hexagonal crystal systems; the second groupsG2d contains
the crystals with the CC 3, 3m, 4, 4mm, 6, 6mm of the
trigonal, tetragonal, and hexagonal crystal systems; and the
third groupsG3d contains the crystals with the CC 32, 422,

FIG. 2. There are three different SBZ realizations for theG1,G2, andG3 of crystals with quadratic nonlinearity. For crystals with cubic
nonlinearity the SBZ coincides with the SBZ ofG2 of the quadratic nonlinearity crystals. The optical breathers of the small energy are
formed in the zones I, II, and III,(BZ) by means of three different(a), (b), and(c) mechanisms as shown in the figures. These zones are
hatched. The width of the zones depends on the nonlinearity parameters and from this one- or two-photon processes are realized.

FIG. 3. There is the SBZ for the quadraticG2 and cubic crystals,
under the condition of two-photon processes, when adjacent BZ II
and BZ III somewhat overlap with one another(in Fig. 2 G2) and
combine into a one wide BZ II which by means of the directionsB4

and angleaa9 are determined.
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42m and 622 of the trigonal, tetragonal and hexagonal crystal
systems.

The situation considered in Fig. 2G1 taking into account
that for the group of crystalsG1 the quantityx

l,l8
s2dsa→p /2d

=0. Unlike theG1, the G2 of the crystals realizes another
SBZ (see Fig. 2G2). In particular, for theG2 the quantity
x

l,l8
s2dsa→p /2dÞ0 and consequently in the zone III the direc-

tion B38 the angleaa8 appear which are defined through the
equationMl =Rl,0 (but for a different valuex

l,l8
s2d ,xzzzthan in

zone II). In zones II and III resonance optical breathers will
be formed by means of the mechanism(a) but breather pa-
rameters in zones II and III will be different.

For theG3 of the crystals the situation is quite different as
compared toG1 and G2. In this case all components of the
quantity x

l,l8
s2d equal to zero and consequentlyMl =0 every-

where and we have only one special directionB3 which
points along they axis. The quantityRl,0sp /2d has maximum
value in this direction meaning that in this single BZ the(b)
MFB (i.e., self-induced transparency) will be realized(see
Fig. 2 G3).

The SBZ considered above in Fig. 2 are valid for OPEI as
well as for TPEI. These cases differ from each other only by
the value ofRl,0, which for the case of the TPEI is rather
small in comparison with the case of OPEI[15]. Conse-
quently, the equationml =Rl,0 necessary for realization of the
“blended” MFB under the condition of the TPEI will be sat-
isfied for the directions of the pulse for which the anglea
will be closer top /2 (at the same value of all other param-
eters of pulse and medium). This is due toRl,0 taking maxi-
mum value when the pulse along they axis is propagated.
This fact lead to the following differences between the SBZ
for the one-and two-photon breathers(OPEI and TPEI pro-
cesses).

A. In the quadratic nonlinearity crystals

(1) For the two-photon breathers comparison with one-
photon breathers the FZ(II ) and FZ(III ) for the crystalsG1
andG2 and also FZ for the crystalsG3 will be extended. At
the same time BZ II and BZ III for crystalsG1 andG2, and
BZ for the crystalsG3 will be narrowed(Fig. 2).

(2) In the case of the two-photon breathers for the crys-
talsG2 will be able to arise different, comparison with Fig. 2
G2, SBZ when width of the FZ(III ) equal to zero. In this
case adjacent zones of BZ II and BZ III somewhat overlap
with one another and combine into a one wide BZ with cho-
sen directionB4 makes angleaa9 with the opticalO axis,
which do not coincide in ether directionsB2 or B38 directions.
In other words, under the condition of TPEI for the crystals
G2 a new SBZ can arise(Fig. 3).

Consequently, unlike the OPEI, under the condition of the
TPEI processes for the crystalsG2, depending on the value
of the parameters of the pulses and media, two different Fig.
2 G2 and Fig. 3 SBZ will be realized.

(3) The SBZ for crystals with quadratic susceptibilityG1
andG3 are the same for one- and two-photon breathers.

B. In Kerr-media

From Eq.(8) it follows that all uniaxial crystals with cu-
bic nonlinearity have the same chosen directions and SBZ as

those of the crystals ofG2 with quadratic nonlinearity and
hence Fig. 2G2 and Fig. 3 applies for crystals with cubic
nonlinearity as well.

Hence for crystals with quadratic susceptibilityG2 and
Kerr media SBZ will be different on whether the conditions
of OPEI or TPEI are realized, at the same values of the other
parameters of the medium and field.

V. CONCLUSION

The NSE is the fundamental equation to describe solitary
waves, which occur when dispersion is balanced by nonlin-
earity, when both group velocity dispersion and nonlinearity
play an important role simultaneously. The input intensityIsol
of the pulse necessary for the excitation of the soliton by
means of the quantity]2k/]v2, i.e., from the dispersion prop-
ertiesksvd of the medium is determined[8]. For the breath-
ers of small energy the situation is different. An input inten-
sity for the breather generationIbr is proportional to the
quantity]2V /]Q2 and it can be determined from the relation
(14) for V andQ. The quantitiesV andQ characterize “in-
ternal properties” of the breather. Unlike soliton, the inten-
sity of excitation of the breatherIbr is determined not only by
the dispersive properties of the medium and the direction of
extraordinary wave propagation, but also by the internal pa-
rameters of the breather and the symmetry of the medium.
Because numerical values of the nonlinear susceptibilities
can vary very strongly in different media, in different solids
the minimum intensity for non-resonance breather generation
will be different, too[15].

Unlike one-photon breathers[15], for two-photon breath-
ers connection between breather’s parametersV andQ [Eq.
(14)] and the quantityMl [Eq. (12)] do not depend on the
coefficient of resonance optical absorptionRl,0sad [Eq. (11)].
Therefore, unlike of the case of OPEI, under the condition of
TPEI the pulse interaction with optical resonance impurities
does not influence the parameters of the nonresonance
breathers(BZ I in Fig. 2 G1 and Fig. 2G2 and Fig. 3). We
have to note that under the condition of the OPEI linear part
of the atom-photon interaction influence on the parameters of
the nonresonance breathers[9,15].

Consequently in the anisotropic uniaxial media three
mechanisms[(a), (b), and(c)] of the formation of the optical
breathers can be realized for different directions of the ex-
traordinary wave propagation depending on the symmetry of
the medium and from this one- or two-photon processes is
realized. The uniaxial crystals with quadratic nonlinearity
can be divided into three different groups with each of them
having its own SBZ. The SBZ within one of these groups
does not depend on the crystal systems(syngonies or point
groups) and is determined by means of CC and are different
for one- or two-photon processes.

Unlike quadratic media for uniaxial crystals with cubic
nonlinearity, the SBZ depends neither on the crystal systems
nor on the CC and only depends on which one- or two-
photon processes are realized. The SBZ for cubic crystals
coincides with the SBZ of theG2 of the crystals with qua-
dratic nonlinearity.

Hence the mechanisms of the formation of breathers de-
pend on the direction of the pulse propagation and from this
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one- or two-photon processes are realized and this depen-
dence is qualitatively different for media with quadratic and
cubic susceptibilities.

Comparison our results with Ref.[15] for OPEI, have
shown that the SBZ depends not only from CC but from this
one- or two-photon processes are realized.

The mechanisms(b) and(c) do not act independently but
also influence each other. They can strengthen each other
under the condition of(a) MFB but in another case when
ml −Rl,0=0, for example in amplifier media att0,0, the
breathers do not exist and consequently the SBZ will be
changed significiantly: BZ II in Fig. 2G1, BZ II and BZ III
in Fig. 2G2 and BZ II in Fig. 3 will be transformed to the FZ
where no breathers exist.

These considered mechanisms can be realized in different
isotropic media too. Among them one of the most interesting
for applications could be doped fiber media: e.g., an erbium-
doped optical fiber in which a “blended” mechanism for the
formation of solitons has already been considered[18,19].
We anticipate that the properties of optical small energy
breathers may become very useful to the future of optical
communications and photonic devices.
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